If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-60x-437=0
a = 4; b = -60; c = -437;
Δ = b2-4ac
Δ = -602-4·4·(-437)
Δ = 10592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10592}=\sqrt{16*662}=\sqrt{16}*\sqrt{662}=4\sqrt{662}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{662}}{2*4}=\frac{60-4\sqrt{662}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{662}}{2*4}=\frac{60+4\sqrt{662}}{8} $
| 14=-6x-4 | | x17=56 | | 52=x-342 | | v+32=-6(1+3v) | | –3v=–4v−10 | | 33x-40=290 | | 3(9x-3)-672=-9(8x+7)+669 | | –5(m+1)=23 | | 24x-8=32+19x | | -4a+18=-3(3+3a)-3 | | .x-5=15 | | 21x2=525 | | -8x+8=-5x+8 | | -8x+8=-5+8 | | –9+2b=1+3b | | X+4+x-3=0 | | 7+2k=7(1+8k) | | 7x+59=360 | | -7(x-2)=-26+3x | | (r-6)=180 | | -7y²=0 | | 13x+119=288 | | -6n-8=-8(1+5n) | | 7t–19=2 | | 5x+2•3x+8=5 | | -4p+10=-3(2p-2) | | 11/5=4/5-4x | | 3x+52=295 | | a(0+2)=2(0)+21 | | -5+8v=3(-6+7v) | | 3x^2+24x+56=x^2 | | 3x+240=282 |